

GCRF Sustainable futures for the Costa Rica dairy sector – training workshop, CATIE, 5-6th October 2017

Measurement techniques for ammonia emissions from agricultural sources

Tom Misselbrook

Overview

- General principles of different measurement techniques
- Ammonia concentration and flux samplers
- Emissions from land sources
- Emissions from livestock housing
- Emissions from manure storage

Measurement techniques – general principles

Static chambers

Advantages:

Simple, inexpensive Ideal for multi replicate factorial experiments (lab, field) Control

Disadvantages:

May influence emitting conditions – not good for absolute Labour intensive Lack of spatial/temporal representation

Dynamic chambers

Wind tunnel for ammonia emission measurement

Animal respiration chamber – CO_2 and CH_4 emissions

<u>Advantages</u>: Ideal for multi replicate factorial experiments (lab, field) Control

<u>Disadvantages</u>: May influence emitting conditions – not good for absolute Lack of spatial/temporal representation Cost

Tracer ratio techniques

Advantages: Measurement under ambient conditions

Disadvantages: Cost Complexity

Micrometeorological techniques

*IHF Mass Balance technique with passive NH*₃ *samplers*

Advantages:

Measurement under ambient conditions Integrates spatial variation

Disadvantages: Cost Complexity

Backward dispersion modelling - WINDTRAX

Eddy covariance

Ammonia concentration/flux samplers

Absorption flasks:

Pros – inexpensive, simple, large concentration range Cons – require power, time-averaged, freeze/evaporation

Filter badges:

Pros – inexpensive, simple, no power requirement Cons – labour intensive, time-averaged, difficult to estimate suitable exposure time

Passive flux samplers (shuttles):

Pros – direct flux measurement, simple, no power requirement Cons – cost, time-averaged flux

Ammonia concentration/flux samplers

Ferm tubes:

Pros – simple, direct measurement of flux Cons – labour intensive

Instrumentation e.g. lasers: Pros – continuous/high frequency measurement, sensitivity

Cons – expensive, limited to 1/few sampling locations, calibration/drift

Sampler inter-comparison tests

Shuttles vs. absorption flasks

1. Wind tunnels

Lockyer 1984, JSciFoodAg

2. Equilibrium concentration technique

 $Flux = (C_{eq} - C_{a,z}) K_{z,a}$

Svensson 1994, ActaAgScand

3. IHF Mass Balance

Flux from treated area = $(IHF_{dw} - IHF_{uw}) / x$

Uniform emission source and land area without obstructions (trees, buildings etc.)

Denmead et al. 1977, SSSAJ

4. Backward Lagrangian Dispersion model

Use WINDTRAX software – freely available: *www.thunderbeachscientific.com*

Flesch et al. 2007, Ag For Met

Technique inter-comparisons

Circular manure-treated plot

3 replicate plots

4 experiments (different manure types)

Misselbrook et al 2005 Env Poll

Flux results – day 1

Coefficients of variation (%) in measured emission rates

Technique	Cattle slurry	Cattle FYM	Poultry (dry)	Poultry (wet)
IHF	23	24	37	52
Wind tunnels	46	84	74	61
ECT *	30	37	39	36

* many missing data

IHF vs bLS

Pig slurry to bare soil

1 central and 1 background mast (5 shuttles) for IHF

Upwind and downwind masts for bLS (1 shuttle)

Sanz et al 2010 Atmos Env

IHF-technique (Kg N ha⁻¹ h⁻¹)

lHF-technique (Kg N ha⁻¹ h⁻¹)

IHF Mass Balance Method – plot design

Flux from treated area = $(IHF_{dw} - IHF_{uw}) / x$

Circular plot – mast at centre x = radius of plot; typically 20-25 m

IHF Mass Balance Method – plot design

Rectangular plot – e.g. 40 x 40m, 100 x 100m x will vary according to wind direction

IHF Mass Balance Method – plot design

Sampler heights

Maximum – c. 0.1 x fetch length Closer spacing towards bottom e.g.: 0.25, 0.5, 1.0, 2.0, 3.0 m

IHF Mass Balance Method – sampling periods

Days

Flux calculation – Leuning passive flux samplers (shuttles)

Flux from treated area = $(IHF_{dw} - IHF_{uw}) / x$

Horizontal flux at each sampling height:

F = M/At

- M is mass of NH3-N collected in shuttle
- A is effective cross-sectional area of sampler (derived from calibration by Leuning)
- t is duration of sampling period

Integrate over all sampling heights for upwind and downwind masts

Leuning et al 1985 Atmos Env

Measuring emissions from livestock housing 1. Mechanically ventilated – e.g. pig and poultry housing

Concentration at ventilation outlet x ventilation rate e.g. acid absorption flasks Measure 8 – 12 times (24-48h) over the production cycle

Measuring emissions from livestock housing 2. Naturally ventilated – e.g. cattle housing

Use passive flux samplers – Ferm tubes Representative sampling from each side and roof openings Measure 8 – 12 times (24-48h) over the production cycle

Measuring emissions from manure storage

Pilot-scale storage facility

- 1 m³ tanks with adapted ventilated lids
- Continuous ammonia concentration measurements – e.g. Los Gatos analyser
- Intermittent concentration measurements absorption flasks
- Good for *comparative* studies

Pilot-scale manure storage - bunkers

Perimeter profile method

- Passive flux sampler (Ferm tubes) mounted at heights on 4 masts around the store
- Integrated net flux from store at each mast

Backward Lagrangian Stochastic method

Line-averaged background and downwind concentrations Ideally no upwind sources or obstructions

Questions?

